Highlight.Elixir
Load all the test files for different highlighting, validation and language feature showcases.
Summary↑
learnxinyminutes() | Learn X in Y Minutes. Take a whirlwind tour of your next favorite language |
pygments() | Pygments. Python sintax highlighter |
Functions
Learn X in Y Minutes. Take a whirlwind tour of your next favorite language.
Source: http://learnxinyminutes.com/docs/files/learnelixir.ex
# Single line comments start with a number symbol.
# There's no multi-line comment,
# but you can stack multiple comments.
# To use the elixir shell use the `iex` command.
# Compile your modules with the `elixirc` command.
# Both should be in your path if you installed elixir correctly.
## ---------------------------
## -- Basic types
## ---------------------------
# There are numbers
3 # integer
0x1F # integer
3.0 # float
# Atoms, that are literals, a constant with name. They start with `:`.
:hello # atom
# Tuples that are stored contiguously in memory.
{1,2,3} # tuple
# We can access a tuple element with the `elem` function:
elem({1, 2, 3}, 0) #=> 1
# Lists that are implemented as linked lists.
[1,2,3] # list
# We can access the head and tail of a list as follows:
[head | tail] = [1,2,3]
head #=> 1
tail #=> [2,3]
# In elixir, just like in Erlang, the `=` denotes pattern matching and
# not an assignment.
#
# This means that the left-hand side (pattern) is matched against a
# right-hand side.
#
# This is how the above example of accessing the head and tail of a list works.
# A pattern match will error when the sides don't match, in this example
# the tuples have different sizes.
# {a, b, c} = {1, 2} #=> ** (MatchError) no match of right hand side value: {1,2}
# There are also binaries
<<1,2,3>> # binary
# Strings and char lists
"hello" # string
'hello' # char list
# Multi-line strings
"""
I'm a multi-line
string.
"""
#=> "I'm a multi-line\nstring.\n"
# Strings are all encoded in UTF-8:
"héllò" #=> "héllò"
# Strings are really just binaries, and char lists are just lists.
<<?a, ?b, ?c>> #=> "abc"
[?a, ?b, ?c] #=> 'abc'
# `?a` in elixir returns the ASCII integer for the letter `a`
?a #=> 97
# To concatenate lists use `++`, for binaries use `<>`
[1,2,3] ++ [4,5] #=> [1,2,3,4,5]
'hello ' ++ 'world' #=> 'hello world'
<<1,2,3>> <> <<4,5>> #=> <<1,2,3,4,5>>
"hello " <> "world" #=> "hello world"
# Ranges are represented as `start..end` (both inclusive)
1..10 #=> 1..10
lower..upper = 1..10 # Can use pattern matching on ranges as well
[lower, upper] #=> [1, 10]
## ---------------------------
## -- Operators
## ---------------------------
# Some math
1 + 1 #=> 2
10 - 5 #=> 5
5 * 2 #=> 10
10 / 2 #=> 5.0
# In elixir the operator `/` always returns a float.
# To do integer division use `div`
div(10, 2) #=> 5
# To get the division remainder use `rem`
rem(10, 3) #=> 1
# There are also boolean operators: `or`, `and` and `not`.
# These operators expect a boolean as their first argument.
true and true #=> true
false or true #=> true
# 1 and true #=> ** (ArgumentError) argument error
# Elixir also provides `||`, `&&` and `!` which accept arguments of any type.
# All values except `false` and `nil` will evaluate to true.
1 || true #=> 1
false && 1 #=> false
nil && 20 #=> nil
!true #=> false
# For comparisons we have: `==`, `!=`, `===`, `!==`, `<=`, `>=`, `<` and `>`
1 == 1 #=> true
1 != 1 #=> false
1 < 2 #=> true
# `===` and `!==` are more strict when comparing integers and floats:
1 == 1.0 #=> true
1 === 1.0 #=> false
# We can also compare two different data types:
1 < :hello #=> true
# The overall sorting order is defined below:
# number < atom < reference < functions < port < pid < tuple < list < bit string
# To quote Joe Armstrong on this: "The actual order is not important,
# but that a total ordering is well defined is important."
## ---------------------------
## -- Control Flow
## ---------------------------
# `if` expression
if false do
"This will never be seen"
else
"This will"
end
# There's also `unless`
unless true do
"This will never be seen"
else
"This will"
end
# Remember pattern matching? Many control-flow structures in elixir rely on it.
# `case` allows us to compare a value against many patterns:
case {:one, :two} do
{:four, :five} ->
"This won't match"
{:one, x} ->
"This will match and bind `x` to `:two`"
_ ->
"This will match any value"
end
# It's common to bind the value to `_` if we don't need it.
# For example, if only the head of a list matters to us:
[head | _] = [1,2,3]
head #=> 1
# For better readability we can do the following:
[head | _tail] = [:a, :b, :c]
head #=> :a
# `cond` lets us check for many conditions at the same time.
# Use `cond` instead of nesting many `if` expressions.
cond do
1 + 1 == 3 ->
"I will never be seen"
2 * 5 == 12 ->
"Me neither"
1 + 2 == 3 ->
"But I will"
end
# It is common to see the last condition equal to `true`, which will always match.
cond do
1 + 1 == 3 ->
"I will never be seen"
2 * 5 == 12 ->
"Me neither"
true ->
"But I will (this is essentially an else)"
end
# `try/catch` is used to catch values that are thrown, it also supports an
# `after` clause that is invoked whether or not a value is caught.
try do
throw(:hello)
catch
message -> "Got #{message}."
after
IO.puts("I'm the after clause.")
end
#=> I'm the after clause
# "Got :hello"
## ---------------------------
## -- Modules and Functions
## ---------------------------
# Anonymous functions (notice the dot)
square = fn(x) -> x * x end
square.(5) #=> 25
# They also accept many clauses and guards.
# Guards let you fine tune pattern matching,
# they are indicated by the `when` keyword:
f = fn
x, y when x > 0 -> x + y
x, y -> x * y
end
f.(1, 3) #=> 4
f.(-1, 3) #=> -3
# Elixir also provides many built-in functions.
# These are available in the current scope.
is_number(10) #=> true
is_list("hello") #=> false
elem({1,2,3}, 0) #=> 1
# You can group several functions into a module. Inside a module use `def`
# to define your functions.
defmodule Math do
def sum(a, b) do
a + b
end
def square(x) do
x * x
end
end
Math.sum(1, 2) #=> 3
Math.square(3) #=> 9
# To compile our simple Math module save it as `math.ex` and use `elixirc`
# in your terminal: elixirc math.ex
# Inside a module we can define functions with `def` and private functions with `defp`.
# A function defined with `def` is available to be invoked from other modules,
# a private function can only be invoked locally.
defmodule PrivateMath do
def sum(a, b) do
do_sum(a, b)
end
defp do_sum(a, b) do
a + b
end
end
PrivateMath.sum(1, 2) #=> 3
# PrivateMath.do_sum(1, 2) #=> ** (UndefinedFunctionError)
# Function declarations also support guards and multiple clauses:
defmodule Geometry do
def area({:rectangle, w, h}) do
w * h
end
def area({:circle, r}) when is_number(r) do
3.14 * r * r
end
end
Geometry.area({:rectangle, 2, 3}) #=> 6
Geometry.area({:circle, 3}) #=> 28.25999999999999801048
# Geometry.area({:circle, "not_a_number"})
#=> ** (FunctionClauseError) no function clause matching in Geometry.area/1
# Due to immutability, recursion is a big part of elixir
defmodule Recursion do
def sum_list([head | tail], acc) do
sum_list(tail, acc + head)
end
def sum_list([], acc) do
acc
end
end
Recursion.sum_list([1,2,3], 0) #=> 6
# Elixir modules support attributes, there are built-in attributes and you
# may also add custom ones.
defmodule MyMod do
@moduledoc """
This is a built-in attribute on a example module.
"""
@my_data 100 # This is a custom attribute.
IO.inspect(@my_data) #=> 100
end
## ---------------------------
## -- Structs and Exceptions
## ---------------------------
# Structs are extensions on top of maps that bring default values,
# compile-time guarantees and polymorphism into Elixir.
defmodule Person do
defstruct name: nil, age: 0, height: 0
end
joe_info = %Person{ name: "Joe", age: 30, height: 180 }
#=> %Person{age: 30, height: 180, name: "Joe"}
# Access the value of name
joe_info.name #=> "Joe"
# Update the value of age
older_joe_info = %{ joe_info | age: 31 }
#=> %Person{age: 31, height: 180, name: "Joe"}
# The `try` block with the `rescue` keyword is used to handle exceptions
try do
raise "some error"
rescue
RuntimeError -> "rescued a runtime error"
_error -> "this will rescue any error"
end
# All exceptions have a message
try do
raise "some error"
rescue
x in [RuntimeError] ->
x.message
end
## ---------------------------
## -- Concurrency
## ---------------------------
# Elixir relies on the actor model for concurrency. All we need to write
# concurrent programs in elixir are three primitives: spawning processes,
# sending messages and receiving messages.
# To start a new process we use the `spawn` function, which takes a function
# as argument.
f = fn -> 2 * 2 end #=> #Function<erl_eval.20.80484245>
spawn(f) #=> #PID<0.40.0>
# `spawn` returns a pid (process identifier), you can use this pid to send
# messages to the process. To do message passing we use the `send` operator.
# For all of this to be useful we need to be able to receive messages. This is
# achieved with the `receive` mechanism:
defmodule Geometry do
def area_loop do
receive do
{:rectangle, w, h} ->
IO.puts("Area = #{w * h}")
area_loop()
{:circle, r} ->
IO.puts("Area = #{3.14 * r * r}")
area_loop()
end
end
end
# Compile the module and create a process that evaluates `area_loop` in the shell
pid = spawn(fn -> Geometry.area_loop() end) #=> #PID<0.40.0>
# Send a message to `pid` that will match a pattern in the receive statement
send pid, {:rectangle, 2, 3}
#=> Area = 6
# {:rectangle,2,3}
send pid, {:circle, 2}
#=> Area = 12.56000000000000049738
# {:circle,2}
# The shell is also a process, you can use `self` to get the current pid
self() #=> #PID<0.27.0>
Pygments. Python sintax highlighter
Generic syntax highlighter suitable for use in code hosting, forums, wikis or other applications that need to prettify source code
Source: https://bitbucket.org/birkenfeld/pygments-main/src/tip/tests/examplefiles/example_elixir.ex
# Numbers
0b0101011
1234 ; 0x1A ; 0xbeef ; 0763 ; 0o123
3.14 ; 5.0e21 ; 0.5e-12
100_000_000
# these are not valid numbers
0b012 ; 0xboar ; 0o888
0B01 ; 0XAF ; 0O123
# Characters
?a ; ?1 ; ?\n ; ?\s ; ?\c ; ? ; ?,
?\x{12} ; ?\x{abcd}
?\x34 ; ?\xF
# these show that only the first digit is part of the character
?\123 ; ?\12 ; ?\7
# Atoms
:this ; :that
:'complex atom'
:"with' \"\" 'quotes"
:" multi
line ' \s \123 \xff
atom"
:... ; :<<>> ; :%{} ; :% ; :{}
:++; :--; :*; :~~~; :::
:% ; :. ; :<-
# Strings
"Hello world"
"Interspersed \x{ff} codes \7 \8 \65 \016 and \t\s\\s\z\+ \\ escapes"
"Quotes ' inside \" \123 the \"\" \xF \\xF string \\\" end"
"Multiline
string"
# Char lists
'this is a list'
'escapes \' \t \\\''
'Multiline
char
list
'
# Binaries
<<1, 2, 3>>
<<"hello"::binary, c :: utf8, x::[4, unit(2)]>> = "hello™1"
# Sigils
~r/this + i\s "a" regex/
~R'this + i\s "a" regex too'
~w(hello #{ ["has" <> "123", '\c\d', "\123 interpol" | []] } world)s
~W(hello #{no "123" \c\d \123 interpol} world)s
~s{Escapes terminators \{ and \}, but no {balancing} # outside of sigil here }
~S"No escapes \s\t\n and no #{interpolation}"
:"atoms work #{"to" <> "o"}"
# Operators
x = 1 + 2.0 * 3
y = true and false; z = false or true
... = 144
... == !x && y || z
"hello" |> String.upcase |> String.downcase()
{^z, a} = {true, x}
# Free operators (added in 1.0.0)
p ~>> f = bind(p, f)
p1 ~> p2 = pair_right(p1, p2)
p1 <~ p2 = pair_left(p1, p2)
p1 <~> p2 = pair_both(p1, p2)
p |~> f = map(p, f)
p1 <|> p2 = either(p1, p2)
# Lists, tuples, maps, keywords
[1, :a, 'hello'] ++ [2, 3]
[:head | [?t, ?a, ?i, ?l]]
#{:one, 2.0, "three"}
[...: "this", <<>>: "is", %{}: "a keyword", %: "list", {}: "too"]
["this is an atom too": 1, "so is this": 2]
[option: "value", key: :word]
[++: "operator", ~~~: :&&&]
map = %{shortcut: "syntax"}
%{map | "update" => "me"}
%{ 12 => 13, :weird => ['thing'] }
# Comprehensions
for x <- 1..10, x < 5, do: {x, x}
pixels = "12345678"
for << <<r::4, g::4, b::4, a::size(4)>> <- pixels >> do
[r, {g, %{"b" => a}}]
end
# String interpolation
"String #{inspect "interpolation"} is quite #{1+4+7} difficult"
# Identifiers
abc_123 = 1
_018OP = 2
A__0 == 3
# Modules
defmodule Long.Module.Name do
@moduledoc "Simple module docstring"
@doc """
Multiline docstring
"with quotes"
and #{ inspect %{"interpolation" => "in" <> "action"} }
now with #{ {:a, 'tuple'} }
and #{ inspect {
:tuple,
%{ with: "nested #{ inspect %{ :interpolation => %{} } }" }
} }
"""
defstruct [:a, :name, :height]
@doc ~S'''
No #{interpolation} of any kind.
\000 \x{ff}
\n #{\x{ff}}
'''
def func(a, b \\ []), do: :ok
@doc false
def __before_compile__(_) do
:ok
end
end
# Structs
defmodule Second.Module do
s = %Long.Module.Name{name: "Silly"}
%Long.Module.Name{s | height: {192, :cm}}
".. #{%Long.Module.Name{s | height: {192, :cm}}} .."
end
# Types, pseudo-vars, attributes
defmodule M do
@custom_attr :some_constant
@before_compile Long.Module.Name
@typedoc "This is a type"
@type typ :: integer
@typedoc """
Another type
"""
@opaque typtyp :: 1..10
@spec func(typ, typtyp) :: :ok | :fail
def func(a, b) do
a || b || :ok || :fail
Path.expand("..", __DIR__)
IO.inspect __ENV__
__NOTAPSEUDOVAR__ = 11
__MODULE__.func(b, a)
end
defmacro m() do
__CALLER__
end
end
# Functions
anon = fn x, y, z ->
fn(a, b, c) ->
&(x + y - z * a / &1 + b + div(&2, c))
end
end
&Set.put(&1, &2) ; & Set.put(&1, &2) ; &( Set.put(&1, &1) )
# Function calls
anon.(1, 2, 3); self; hd([1,2,3])
Kernel.spawn(fn -> :ok end)
IO.ANSI.black
# Control flow
if :this do
:that
else
:otherwise
end
pid = self
receive do
{:EXIT, _} -> :done
{^pid, :_} -> nil
after 100 -> :no_luck
end
case __ENV__.line do
x when is_integer(x) -> x
x when x in 1..12 -> -x
end
cond do
false -> "too bad"
4 > 5 -> "oops"
true -> nil
end
# Lexical scope modifiers
import Kernel, except: [spawn: 1, +: 2, /: 2, Unless: 2]
alias Long.Module.Name, as: N0men123_and4
use Bitwise
4 &&& 5
2 <<< 3
# Protocols
defprotocol Useless do
def func1(this)
def func2(that)
end
defimpl Useless, for: Atom do
end
# Exceptions
defmodule NotAnError do
defexception [:message]
end
raise NotAnError, message: "This is not an error"